Mathematics Calculation Policy

Rationale

This policy has been designed to show progression in written mathematical methods throughout the school. Our written calculation policy is set out to show:

- The objectives stipulated for all four operations by the National Curriculum
- The calculation methods for each year group
- Relevant vocabulary needed at each stage
- Examples of reasoning activities

Concrete, Pictorial and Abstract

Each method has examples as to what it looks like in the concrete, pictorial and abstract forms. All learners are introduced to a calculation method for the first time using concrete manipulatives. Concrete resources from EYFS to Year 6 include: bead strings, Base 10, Cuisenaire Rods, Place Value counters, Numicon and Snap cubes. Children will then progress through to a pictorial stage before moving to the abstract. During the pictorial stage, children will be taught to use the bar model (see separate policy). The amount of time needed to progress through each stage is unique to each learner.

Mastering Calculation

The new curriculum has a strong focus on mastery and therefore, if a child is fluent in a method for their year group, they should not be moved onto a different method of calculation or a larger set of numbers (see the quick glance guides in this policy). Instead, children will be encouraged by their teacher to 'go deeper' within this method. This may involve: using it in different contexts; using and applying it to other learning; using it with missing digits or values; explaining or experimenting with different aspects of it; proving answers with pictures or manipulatives; or explaining what has gone wrong in a calculation. Children must also check their calculations through the use of estimation and inverse operations.

Mathematical Vocabulary

The National Curriculum places great emphasis upon the use of correct mathematical vocabulary and children developing this. Throughout school, children are strongly recommended to use and apply mathematical vocabulary when learning a new method or concept. They will be constantly exposed to this, have it expertly modelled by their teacher and be expected to use it themselves when justifying methods.

Mental Methods

Children should always be encouraged to see if they can work out a calculation mentally before trying a written method. Children will be shown number patterns and relationships between numbers throughout the school. Times tables are introduced and taught in specific year groups: Reception: x2; Year 1: x5, x10; Year 2: x4; Year 3: x3, x6, x8; Year 4: x7, x9, x11, x12.

Mathematical Vocabulary

Year 1	+	-	\times
Mathematical vocabulary	count on, count back, number bonds, number facts, subtraction facts, fact family, add, subtract, more, less, plus, minus, total, sum, difference between, equal	grouping, sharing, multiply, divide, double, half, array, lots of	

| Year 2 | + | - | \times |
| :---: | :---: | :---: | :---: | :---: |
| Mathematical
 vocabulary | Add, subtract, count on, count back, more, less, plus, minus, total, sum,
 difference, partition, bridge, round, inverse, number line, number facts,
 multiple of 10, regroup | Inverse, operation, multiplication table, times table, multiply,
 multiplication, times, product, repeated addition, lots of, array, divide,
 division, shared by, halve, double | |

Year 3	+	-	\times
Mathematical vocabulary	Add, subtract, count on, count back, more, less, plus, minus, total, sum, difference, partition, bridge, round, inverse, number facts, multiple of 10, regroup	Inverse, operation, multiplication table, times table, multiply, multiplication, times, product, repeated addition, lots of, array, divide, division, shared by, halve, double	

Year 4	+	-	\times
Mathematical vocabulary	addition, subtraction, sum, total, difference, minus, less, plus, altogether, column addition, column subtraction, regroup, operation, estimate, equal, method, inverse	place value, multiply, multiplication, times, product, divide, division, factor, factor pairs, multiplication \& division facts, operation, estimate, multiple, shared equally, array	

| Year 5 | + | - | \times |
| :---: | :---: | :---: | :---: | :---: |
| Mathematical
 vocabulary | addition, subtraction, sum, total, difference, minus, less, column
 addition, column subtraction, operation, regroup, inverse, estimate,
 digit, place holder, rounding, approximate, accuracy | multiply, multiplication, times, product, commutative, short
 multiplication, long multiplication, multiplication facts, estimate, multiple,
 remainder | |

Year 6

$+$

Progression in Written Calculation

Addition

Addition and Subtraction are connected. Addition names the whole in terms of parts, while subtraction names a missing part of the whole.

Part	Part
Whole	

Starting at the bigger number and counting on	This stage is essential. Children start to Number tracks Start on 5 then count on 3 more calculate rather than just count. Where one quantity is increased by some amount (augmentation). Count on from the total of the first set (3 in your head) and count on 2. Always start with the larger number. Use bead strings or Cuisenaire Rods. Number tracks teach children the order of numbers. Number line - points are marked instead (allowing fractions of numbers). Could write number sentence along with creation.	Use a number line with pictorial representation- start at the larger number and count on in ones. Use a bar model that encourages the children to count on rather than count the whole. This is an important moment as number lines are very different from number tracks.	Children start to show recognisable abstract number sentences. The sum is $4+2=\mathrm{Or},=4+2 \mathrm{Not}, 2+4$
Regrouping to make 10	Use ten frames and counters/cubes or use Numicon. $6+5=11$ Use bead strings to show $7+5$ can be partitioned into $7+3+2$ (children use number bonds to 10).	Children then draw the ten frame Use a number to partition (decompose) e.g. $9+5$ Or, use their own pictures to show regrouping $3+9=$	The sum is $9+5=$ Children develop an understanding of equality: $\begin{aligned} & 6+?=11 \\ & 6+5=5+? \\ & 6+5=?+4 \end{aligned}$

Adding 10 and then compensating	Use a bead string to work out sums e.g. $7+9$ Children find 7, then add 10 and then adjust by removing 1.	Children draw a picture to show the compensation.	Introduce the informal partitioning method:
Adding in any order	Explore the commutative law, where you can add in any order, using cubes.	Draw the cubes to show that the total has not changed.	$6+3+4$ is the same as $6+4+3$ however the second number sentence is easier \& quicker.
Year 2			
Adding three single digits	Use bead strings to work out sums e.g. $4+7+6=17$. Put 4 and 6 together to make 10 . Add on 7. Build a tower of bricks and then ask the child to split them in 3 ways - add the numbers together.	Add together three groups of objects. Draw a picture to recombine the groups to make 10. Bar models represent the 3 numbers.	Combine the two numbers to make 10 and then add on the remainder. $\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Children should be shown missing number sentences.
Adding 10	Use cubes or dienes to start with a number and add on 10 more.	Use or draw number squares to count on 10 more by looking at the number directly below.	Children to use informal partitioning method:

			Place larger number in your head and add on 10 more by counting in tens. Represent the number sentence in different ways: $41=31+10,31+10=41$
TO + O (No regrouping)	Continue to develop understanding of place value and partitioning e.g. $41+8$ Using dienes or Cuisenaire rods to show bar models.	Represent base 10 with lines / dots e.g. $41+8$	Children to use informal partitioning method: Introduction of the partitioning column method:
TO + O (With regrouping in the ones)	Continue to develop understanding of partitioning and place value $36+5$ Using dienes or Cuisenaire rods to show bar models.	Represent base 10 with lines / dots e.g. $36+5$ The part whole model:	Children to use informal partitioning method:

		36The bar model:? 5 36 5	Introduction of the partitioning column method:
TO + TO (No regrouping)	Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. $\text { E.g. } 24+15$ Partitioning(Aggregation model) $34+23=57$ Base 10 equipment: Children create the two sets with Base 10 equipment and then combine; ones with ones, tens with tens. Using dienes/Cuisenaires to show bar models.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. The part whole model: The bar model:	Children to use informal partitioning method: Introduction of partitioning column method:

Year 4/5/6

Y4 - compact column method up to 4 digits and two decimals (introduced with money) with the same number of digits. If there are more than 10 or more counters in a column regroup into a new counter in the next column. Then add up all the columns. Make it, Draw it, Write it.

367
$\begin{array}{r}+85 \\ \hline 452 \\ \hline 11\end{array}$

Y5 - compact column method with more than 4 digits and decimals with different number of digits and regrouping in some columns.
Make it, Draw it, Write it.

Use place value counters for adding decimals

Y6 - compact column method with more than four digits and decimals with different place value and regrouping in some columns.
Make it, Draw it, Write it.

2	3	.	3	6	1
	9	.	0	8	0
5	9	.	7	7	0
+	1	.	3	0	0
9	3	.	5	1	1
2	1		2		

Use place value counters for adding decimals

Quick Glance Addition Written Methods:		
Year Group	Written Method Name	Written Method Example
EYFS	Number tracks and Number lines	
Year 1	Informal Partitioning	$\frac{1 / 0}{4 / 8}+\frac{1}{9}$
Year 2	Partitioning column	$\begin{aligned} & \frac{T}{2} 10 \\ & \hline 2+\frac{T 10}{1 / 5} \\ & \frac{20 \text { and } 4}{10 \text { and } 5} \\ & \frac{10 \text { and } 9}{24+15}=39 \end{aligned}$
Year 3	Expanded column	$\begin{aligned} & H T 0 \\ & 360 \\ & +\quad 9 \\ & \hline 99(0+9) \\ & 60(60+0) \\ & \frac{300(300+0)}{369} \end{aligned}$
Year 4/5/6	Compact column	$\begin{array}{r} 243 \\ +368 \\ \hline 611 \\ \hline 11 \end{array}$

Quick Glance Addition Number Size	
Year Group	Number size
EYFS	Up to 1 digit + 1 digit
Year 1	Up to 2 digits + 1 digit
Year 2	Up to 2 digits + 2 digits
Year 3	Up to 3 digits (1000)
Year 4	Up to 4 digits including two decimal places
Year 5	More than 4 digits and decimals
Year 6	More than 4 digits and decimals

Subtraction

Objective and strategies	Concrete	Pictorial	Abstract
EYFS/Year 1			
Taking away ones	Use physical objects: counters, cubes etc to show how objects can be taken away (separation model).	Cross out drawn objects to show what has been taken away	Children start to show recognisable abstract number sentences. $4-3=1$
Counting back	Using number lines or number tracks. Children start with 6 and count back 2	Represent on number line (full and empty).	Children start to show recognisable abstract number sentences. $6-2=4$
Find the difference	Finding the difference using cubes, bead strings Numicon or Cuisenaire rods (comparison model).	Draw the cubes. Use the bar model.	Find the difference between 8 and 5 $8-5=$ Explore why 9-6=8-5
Part whole model	Link to addition - use the part whole model to help explain the inverse. Explore using counters and bead	Use a pictorial representation of objects	Use numbers within the part whole model

Make 10 (bridging 10) by partitioning one of the numbers	14-5 (Numicon, counters, 10 square, bead string) Take away 4 to make 10 Then takeaway 1 so you have taken away 5 . You are left with the answer of 9 .	Ten frame: Number line. Start at 13. Partition the next number. Take away 3 to reach 10. Take away 4. $13-7=6$ (3) 4	Children start to show recognisable abstract number sentences. 13-7=6, 13-6=7 $14-5=9 \quad 5$ is made up of 4 and 1 so I can subtract 4 to make 10 and then 1 to get to 9
Subtracting 10 and then compensating	$18-9$ Bead string: Children find 18 , then subtract 10 and then adjust by adding 1 .	Children draw a picture to show the compensation. Number line:	$18-10=8,8+1=9$ Introduce informal partitioning method:
Year 2			
$\begin{aligned} & \hline \text { TO - O } \\ & \text { (No } \\ & \text { regrouping) } \end{aligned}$	Create the bigger number using base 10/place value counters and then subtract the smaller number. $48-7$ Children should be advised to use mental methods to calculate this sum initially, before proving their answer with written methods.	Draw the base 10/place value counters and then cross out what you are subtracting. The bar model:	Introduction of the partitioning column method:

TO - 0 (With regrouping in the ones)	Create the bigger number using base 10/place value counters and then subtract the smaller number. You can't remove 9 from 8, so you need to 'steal' a ten from the next column. Regroup into 30 and 18. Children can play around with numbers that can add to 48. $48-9$	Draw the base 10/place value counters and then cross out what you are subtracting. The regrouping must be clearly shown.	Introduction of the partitioning column method:
$\begin{aligned} & \hline \text { TO - TO } \\ & \text { (No } \\ & \text { regrouping) } \end{aligned}$	Create the bigger number using base 10/place value counters and then subtract the smaller number. $48-12$	Draw the base 10/place value counters and then cross out what you are subtracting. The bar model:	Introduction of the partitioning column method:
TO - TO (With regrouping in the ones)	Create the bigger number using base 10/place value counters and then subtract the smaller number. $41-26$	Draw the base 10/place value counters and then cross out what you are subtracting. The regrouping must be clearly shown. 41-26	Introduction of the partitioning column method:

Quick Glance Subtraction Written Methods:		
Year Group	Written Method Name	Written Method Example
EYFS/Year 1	Number tracks and Number lines	Number line:
Year 1	Number lines and Informal Partitioning	$\begin{aligned} & 18-7=11 \\ & \frac{10}{18}-\frac{10}{7} \\ & 18-7 \\ & \underbrace{18}_{10 \text { and } 1}=11 \end{aligned}$
Year 2	Partitioning column	$\begin{aligned} & \frac{T 0}{4 / 8}-\frac{T 10}{1 / 2} \\ & -\quad 40 \text { and } \frac{8}{20 \text { and } 2} \\ & -\frac{106}{30 \text { and } 6}=36 \\ & 48-12=36 \end{aligned}$
Year 3	Expanded column	HTO 234 $\frac{23}{1(4-3)}$ $10(30-20)$ $\frac{200(200-100)}{211}$ $234-23=211$
Year 4/5/6	Compact column	

Quick Glance Subtraction Number Size	
Year Group	Number size
EYFS	Up to 1 digit - 1 digit
Year 1	Up to 2 digits - 1 digit
Year 2	Up to 2 digits - 2 digits
Year 3	Up to 3 digits (1000) Places
Year 4	More than 4 digits and decimals
Year 5	More than 4 digits and decimals
Year 6	

Part	Part	Part	Part
Whole			

Multiplication and division are connected. Both express the relationship between a number of equal parts and the whole.

Objectives and strategies	Concrete	Pictorial	Abstract
EYFS/Year 1			
Multiply by adding equal groups together	Use a set of objects. Double the set by finding the same number again. Make sure both sets are equal.	Draw the objects $10 \mathrm{p}){ }^{10 \mathrm{p}}{ }^{10 \mathrm{p}}{ }^{10 \mathrm{p}}$ showing: 2×3 and 3×2	Children may start to show recognisable abstract number sentences. $\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
Introduction of using arrays to count in multiples of 2,5 , 10 (communtative law)	Use a set of objects. Children can place them in groups or start to focus them in on array shapes. $2 \times 6 \quad 6 \times 2$	Draw the objects in arrays. Draw in different rotations to find the communtative sentences. This prepares children for the grid method and finding of factors. Also, to help find the area of rectangles.	Children count in multiples of a number out loud. (See mental mathematics policy for more information). Write sequences with multiples of numbers. 2, 4, 6, 8 etc Children start to use an array to write a range of abstract calculations. $\begin{aligned} & 2 \times 5=10,5 \times 2=10,5+5=10 \\ & 2+2+2+2+2=10 \end{aligned}$
Reason about odd and even numbers and relate to	Create arrays of odd and even numbers with objects - what is the same or different about them?	Draw the objects and circle/highlight the differences and similarities. Draw what happens when you double the number.	Children may start to show abstract number sentences.

\begin{tabular}{|c|c|c|c|}
\hline doubling and halving \& Double the number by adding the same number of objects and discuss what happens. \& \& \begin{tabular}{l}
\[
3+3=6
\] \\
Odd + Odd = Even
\end{tabular} \\
\hline \begin{tabular}{l}
Doubling of all numbers up to 10/ \\
halving
\end{tabular} \& Use practical activities to show how to double a \& \begin{tabular}{l}
Draw pictures to show how to double a number \\
Double 4 is 8

\square
\square
\square
\square
\square

\end{tabular} \& Partition a number, then double each part before recombining

\hline Repeated grouping / repeated addition \& | There are 3 equal groups with 4 in each group. |
| :--- |
| Use a bead string to show repeated addition. |
| 00000000 |
| Children use Cuisenaire Rods to partition totals into equal trains. \square |
| Using Numicon to show 4×5 : | \& | Make a necklace with red and yellow beads using three red beads for every yellow bead. Use the bricks to make a tower three times as high as this one: |
| :--- |
| Children represent the practical resources in a picture and use a bar model. |
| Represent on the number line. | \& | Children start to show recognisable abstract number sentences. |
| :--- |
| Children are taught about the multiplication 'x' symbol. |
| $3 \times 4=12$ is the same as $4+4+4=12$ |

\hline \multicolumn{4}{|c|}{Year 2}

\hline Consolidating use of arrays and repeated addition (distributive law) \& 32 pegs on a board are to be arranged into fours. How can these be shown? This shows the distributive law where $8 \times 4=3 \times 4+5 \times 4$. \& Ch to illustrate this in different ways and should be encouraged to be flexible with how they use number and can be encouraged to break the array into more manageable chunks. \& Which could also be seen as

$$
\begin{aligned}
& 9 \times 4=(3 \times 4)+(3 \times 4)+(3 \times 4)=12+12+ \\
& 12=36 \\
& \text { Or } 3 \times(3 \times 4)=36
\end{aligned}
$$

\hline
\end{tabular}

Year 4

regrouping of
tens into
hundreds)

HTO x 0

(with
regrouping of ones into tens and tens into hundreds)

> Use the place value counters to
> Make the number with the place value

> Start with the ones. Make 3 groups of 7. E.g
> \bullet -900
> - ๑อ๐๐๐ •๑๑๐
there are 10 mor olumn exchange for counters in the

Now look at the tens, children make 3 groups of 50 . E.g. $3 \times 50=250$

If there are 10 or more counters in a column exchange for the next highest

$$
\begin{aligned}
& \text { column. } \\
& \text { E.g. } 10 \text { tens for } 1 \text { hundred }
\end{aligned}
$$

The previously exchanged counters are . added to the product
\because - \odot ○○๑๐
Now look at the hundreds, make 3 groups
The pref 200. E.g. $200 \times 3=600$
The previously exchanged counters are
added to the product and the added to the product and the $\stackrel{\circ}{\circ \circ}$
$\circ \circ$
$\circ 0$
00 1. - x^{23}
is important at this stage that they alway multiply the ones first and note down the nswer followed by the tens, then hundels

With regrouping of 1 s into Tens (place value counters):

Show in a bar model.

771		
257	257	257

With regrouping:

Year 4/5/6

Y5 - Introduction of expanded long multiplication with up to 4×2 digits. Make it, Draw it, Write it.	Y5 - Introduction of compact long multiplication with up to 4×2 digits. Make it, Draw it, Write it.	Y6 - Consolidation of compact short multiplication and compact long multiplication methods with up to 4 digits by a 2 digit. Including multiplication of decimals. Make it, Draw it, Write it.
32	124×26 becomes	124×26 becomes
$\times 24$	12	$124 \times 2=12$
	124	124
120 (4x30)	$\times 26$	7115×2
120 (4x30)	$\begin{array}{lll}7 & 4 & 4\end{array}$	1244
$40 \quad(20 \times 2)$	$\begin{array}{llll} 2 & 4 & 8 & 0 \end{array}$	
60020×30		$X \quad 2 \quad 2 \quad$2 4 8
768	$\begin{array}{llll}3 & 2 & 2 & 4\end{array}$	

Quick Glance Multiplication Written Methods:		
Year Group	Written Method Name	Written Method Example
EYFS	Arrays	
Year 1	Arrays and repeated addition	
Year 2	Arrays in a grid	$40+12=52$
Year 3	Grid method	$40+12=52$

Quick Glance Multiplication Number Size (Children must stay within these boundaries)	
Year Group	Number size
EYF S/Year 1	Up to 2 digits $\times 1$ digit
Year 1	Up to 2 digits $\times 1$ digit
Year 2	Up to 2 digits $\times 1$ digit
Year 3	Up to 2 digits $\times 1$ digit
Year 4	Up to 3 digits $\times 1$ digit
Year 5	Up to 4 digits \times Up to 2 digits
Year 6	Up to 4 digits \times Up to 2 digits

Quick Glance Multiplication Written Methods:		
Year Group	Written Method Name	Written Method Example
Year 4	Expanded short multiplication and compact short multiplication	Expanded Short: Compact Short:
Year 5	Expanded long	Expanded Long: Compact Long:
Year 6	multiplication and compact long multiplication	

Division

Objectives and strategies	Concrete	Pictorial	Abstract
EYFS/Year 1			
Equal groups	Children will group different objects into equal sized piles.	Children will draw equal sized groups of objects.	
Sharing objects into equal sized groups	I have 6 cubes; can you share them equally into 2 groups?	Represent the idea pictorially and using a bar.	$6 \div 2=3$ Children should be encouraged to link these ideas to their times tables facts. Ch could draw bars with abstract numbers in them.
Solve problems which involved sharing or grouping Know all halves to 10 through grouping and sharing	Sharing: Introduce practical problems which the children can physically solve. 1) Look at the number that we are dividing e.g. 12 2) Share this number out equally into section of the number that we are dividing by e.g. 4 3) Count how many there are in each section 6 sweets get shared between 2 people. How many sweets do they each get? A bottle of fizzy drink shared equally between 4 glasses. How much does each person get? $12 \div 4=3$ Sharing: 3 3 Grouping:	Draw a picture to show what happened. Sharing: Grouping:	

Grouping objects	Divide quantities into equal sized groups. I have 12 cubes. After making groups of 3 we discovered there were 4 of them. Using place value counters e.g. $96 \div 3=32$ After making groups of 3 , we find there were 3 groups of ten and 2 groups of one. Creating different arrays using cubes.	Represent using arrays: How many strawberries will each child have if 30 are shared between 5 children? Arrays are really important as they link to the bus stop method! Bar Modelling: You know how many would be within each group, but need to find out how many groups. no. of boxes = divisor dividend \div quotient $=$ divisor$96 \div ?=32$32 $?$ 96	Sweets are sold in bags of 3 . If I have 12 sweets how many bags would I need? $12 \div 3=4$ There are 96 children sitting in rows of 3 . How many rows are there? $96 \div 3=32$
Grouping using repeated subtraction	Using Cuisenaire rods above a ruler. Discuss that the number sentence ($6 \div 2=$?), says, "How many 2s fit into 6?" How big is each hop/rod?	Represent using a bar model and link to the Cuisenaire rods and bead strings: $12 \div ?=3$ 12	Children are introduced to the \div sign. $\begin{aligned} & 12 \div 4=3 \\ & 12 \div 3=4 \end{aligned}$ This is linked to the Number line.

	Use a bead string to help children to group. $12 \div 3=4$	Represent in a Number line to show the equal groups that have been subtracted. The arrows go from the dividend to zero. The number of jumps equals the number of groups.	$\begin{aligned} & 12-4-4-4=0 \\ & 12-3-3-3-3=0 \end{aligned}$ Discuss how division is not commutative e.g. $12 \div 3=4$ but $3 \div 12$ doesn't $=4$ However, $12 \div 3=4$ and $12 \div 4=3$!
Linking multiplication and division through missing number questions	Use objects to make 24. I know there are 2 lots so split them up. How many in each group? $2 \times ?=24$	Drawing arrays or groups: $3 \times ?=12$	Introducing the Inverse operations Trios can be used to model the 4 related multiplication and division facts. $\begin{aligned} & 3 \times 4=12 \\ & 4 \times 3=12 \\ & 12 \div 3=4 \\ & 12 \div 4=3 \end{aligned}$ Children use symbols to represent unknown numbers and complete equations using inverse operations. They use this strategy to calculate the missing numbers in calculations.
Year 3			
Sharing $\mathrm{TO} \div \mathrm{O}$ (with no regrouping and no remainder)	$\begin{array}{rl} 36 \div 3 & =12 \\ & 1 \\ \hline & 10 \\ \hline 10 & 10 \\ \hline 10 & 12 \\ \hline & 10 \\ \hline 10 & 12 \end{array}$	$\begin{array}{rl} 36 \div 3 & =12 \\ \begin{array}{rl} 36 & 1 \\ \hline 10 & 00 \end{array}=12 \\ \hline 10 & 000 \\ \hline 10 & 00 \end{array}=12$	$36 \div 3=12$

Sharing $\text { TO } \div 0$ (with regrouping and no remainder)	$42 \div 3=14$	$10 s$ $1 s$ 0 $0000=14$ 0 $0000=14$ 0 $0000=14$	Children to be able to make sense of the place value counters and write calculations to show the process. $\begin{aligned} & 42 \div 3 \\ & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \end{aligned}$
Using the distributive law	Create arrays using cubes. Model grouping the sums into different colours or sections. E.g. $56 \div$ 8 can be done as $40 \div 8$ and $16 \div 8$	Ch draw the pictorial representation of the array of 8 cubes.	Write their sum using abstract numbers. $56 \div 8=7$
Sharing $\mathrm{TO} \div \mathrm{O}$ (no regrouping and a remainder)	Use concrete objects to share between groups to see how many is left over. $14 \div 3=4 \mathrm{r} 2$ Sharing: $17 \div 3=5 \mathrm{r} 2$ Divide objects between groups and see how much is left over.	Use a number line to see how many more you need to jump to find a remainder. $13 \div 4=3 \mathrm{r} 1$ Draw dots in circles to divide an amount and clearly show a remainder. Sharing: $17 \div 3=5$ r 2 Grouping: $17 \div 3=5 \mathrm{r} 2$	Complete written divisions and show the remainder using r.

			Or, use compact short division.
HTO $\div 0$ (No regrouping and no remainder)			
HTO : O (No regrouping and a remainder)			
$\mathrm{HTO} \div \mathrm{O}$ (Regrouping of hundreds into tens)			
$\text { HTO } \div \mathrm{O}$ (Regrouping of tens into ones)			
HTO $\div 0$ (Regrouping of hundreds into tens and tens into ones and a remainder)			
Year 5			
Where there are zeros in the quotient e.g. $816 \div$	$728 \div 5=145 r 3$ Layout the bus stop. Place counters in an array with the number of rows reflecting the divisor \& keeping to column values.	Draw a pictoral representation of the columns and place value counters.	Introduction of the compact short division method:
4=204		*000 Δ^{4}	$\begin{array}{l\|l\|l} 4 & 5 & r 3 \end{array}$
HTO \div O no regrouping and no remainder		$\text { x0000 } x 000000$	1 4 5 13 5 7 22 28
HTO $\div \mathrm{O}$ no regrouping and a remainder			Model alongside the concrete manipulatives.
HTO $\div 0$ with regrouping of hundreds into tens and no remainder	Start with the biggest place value. 7 hundreds put into groups of 5 . 1 group of 5 with 2 hundreds left over. Regroup these 2 hundreds for 20 tens. These are then placed within the array in the tens column.	time. Symbols can be crossed out when regrouping takes place. Bar modelling can support learners when	

			a certain number of decimal places.

Quick Glance Division Written Methods:		
Year Group	Written Method Name	Written Method Example
EYFS Year 1	Sharing and grouping in circles	Sharing: Grouping:
Year 2	Sharing and grouping in arrays	
Year 3	Sharing within place value columns	

Year Group	Written Method Name	Written Method Example
Year 4	Expanded short division, or compact short division	Expanded short division:
Year 5	Compact short division	Compact short division:
Year 6	Long division	Long division:

Quick Glance Division Number Size (Children must stay within these boundaries)	
Year Group	Number size
EYF S/Year 1	Up to 2 digits $\div 1$ digit
Year 2	Up to 2 digits $\div 1$ digit
Year 3	Up to 2 digits $\div 1$ digit
Year 4	Up to 3 digits $\div 1$ digit
Year 5	Up to 3 digits $\div 1$ digit
Year 6	Up to 4 digits $\div 2$ digit

Similar and different

- Comparing written methods
- Comparing numbers
- Comparing shapes
- Comparing properties of numbers
- Comparing representations

What could this not be?

- Refining calculation
- Exploring misconceptions
- Estimation
- Procedural fluency
- Properties of shapes and numbers
- Algebra
- Mathematical vocabulary

Say what you see

- Exploring maths in different contexts
- Forging new relationships between numbers
- Developing vocabulary
- Promoting abstract visualisation

Odd one out

- Exploring mathematical language
- Exploring properties of numbers or shapes
- Exploring visualisations

Multiple ways

- Exploring relationships
- Building mathematical resilience
- Exploring number bonds
- Exploring quantity
- Exploring equivalence and equations

True or false

- Exploring mathematical symbols
- Exploring vocabulary
- Exploring properties of number and shape
- Exploring equivalence
- Exploring greater than or less than

Hidden information

- Forging mathematical connections
- Building resilience
- Finding ways in to a problem
- Application of multiple skills

Working backwards

- Refining methods
- Forging relationships and connections
- Exploring number
- Exploring vocabulary
- Developing resilience

Reasoned estimations

- Develop number sense
- Understanding relative size
- Developing procedural method understanding
- Transition from pictorial representations

Conjectures

- Exploring misconceptions
- Developing vocabulary
- Instigating investigation
- Exploring exceptions to the rule
- Exploring patterns and relationships

Spot the mistake

- Refining written methods
- Teaching procedural activities (e.g. reading a clock, a protractor)
- Exploring number relationships

Mathematical arguing

- Using mathematical language

Which is the most

difficult?

- Looking at bridging, exchanging
- Judging calculations on their complexity rather than number size.

	Autumn Term	Spring Term	Summer Term
Reception	- Count reliably to 20.	- Order numbers 1-20 - Say 1 more/1 less to 20	- Counting in 10's, 5's and 2's - Know doubles to 10 - Add and subtract two single digit numbers
Year 1	- Add and subtract within 5 - Subtract within 5 - Add within 5 - Add and subtract 1 to a 2 digit number - Subtract within 10 - Adding within 10 - Number bonds to 10	- Counting in 10's, 5's and 2's - Know halves of even numbers to 20 - Know doubles to 10 - Add and subtract 10 to a 2 digit number - Add 3 single digit number together - Use language of day, week, month and year. Tell time to hour and half past.	- Number bonds to 20 - Subtract any 1 digit number from any 2 digit number - Add any 1 digit number to any 2 digit number - Finding how many 'sets of' a smaller number make a bigger number Recognise half and quarter of an object, shape or quantity
Year 2	- Add any pair of 2 digit numbers - Add and subtract multiples of 10 to any give 2-digit number - Say 10 more/less than any number to 100 - Add two or three single digit numbers - Know all the pairs of numbers to 10,12 and pairs with total of 20 - Count on and back in ones and tens from any given 2 - digit number	- Learn $2 x, 5 x$, and $10 x$ table (looking at lots of) - Double numbers up to 20 - Using fingers, say where a given number is in the $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s count (e.g. 8 is the fourth number when I count in twos - Count in $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s - Subtract any pair of 2-digit numbers by counting back in tens and ones or by counting up	- Begin to double two-digit numbers less than 50 with digits of $1,2,3,4$ or 5 - Double and begin to halve numbers to 40 and multiples of 10 and 100 Halve/Double numbers to 20 - Relate division to grouping (how many groups of five in fifteen) - Tell time to five minutes, including quarter past/to - Recognise half, $1 / 3,2 / 4,3 / 4$ of a shape, quantity or object - Begin to count in 3 's and learn the $3 x$ table.
Year 3	- Use place value and number facts to add and subtract numbers - Subtract by counting up - Learn to count in 3's and 4's and know the 3x and $4 x$ table and relevant division facts - Add and subtract any two digit numbers by counting on in 10s and 1 s or by using partitioning - Perform place value subtractions without a struggle (536-30=506) - Know multiples of 10 with a total of 100 - Know pairs with each total to 20	- Find 10 or 100 more/less than a given number. Count on in 50 's from 0 - Tell the time to the nearest minute using 12 and 24 hour clocks, know the number of days in a month. - Subtract, when appropriate, by counting back or taking away, using place value and number facts - Learn to count in 9's and 8's and begin to learn $9 x$ and $8 x$ table and relevant division facts - Add and subtract pairs of 'friendly' 3 digit numbers, e.g. $230+450$	- Recognise fractions that add to 1. (e.g. $1 / 4$ +3/4) - Halve even numbers up to 100 , halve add numbers to 20. - Double numbers up to 50 - Partition teen numbers to multiply by a single digit number (3×14 as 3×10 and (3×4) - Begin to learn to count in 6's, 7's and 8's. Begin to know the $6 x, 7 x$ and $8 x$ tables and relevant division facts

Year 4

Year 5

Year 6

- Find 1000 more/less than a given number.
- Add and subtract £1,10p and 1p to amounts of money.
- Know by heart, quickly derive number bonds to 100 and $£ 1$
- Add and subtract any two 2 digit numbers by partitioning or counting on
- Begin to learn to count in 11's and 12's. Begin to know the $11 x$, and $12 x$ tables and relevant division facts
- Read and compare and convert between analogue/digital 12/24 hr clocks.
- Multiply mentally one digit by two digit numbers
- Count in 6's and 8's. Know $6 x$ and $8 x$ tables
- Find change from $£ 10, £ 20$ and $£ 50$
- Count in multiples of 25
- All times tables facts
- Begin to double and halve amounts of money (£35.60 doubles = £71.20)
- Read Roman numerals to 100.
- Count up/down in hundredths
- Partition 2-digit numbers to multiply by a single -digit number mentally (4 x 24 as $4 \times$ 20 and 4×4)
- Use understanding of place value and number facts in mental multi and division (36 $\times 5$ is half of 36×10 and $50 \times 60=3000$ or $245 \div 20$ is double $245 \div 10$)
- Divide multiples of 100 by 1 -digit numbers using division facts $(3200 \div 8=400)$
- All times tables facts
- Count up/down in thousands
- Read Roman numerals to 1000
- Use knowledge of multiples and factors, test for divisibility $(246 \div 6=123 \div 3)$
- Double and halve money by partitioning (Half of $£ 75.40=$ Half of $£ 75(37.50)$ plus half of 40p)
- All times tables facts
- Halve and double decimal numbers with up to 2 places using partitioning e.g 36.73 doubled is double 36 plus double 0.73)
- Use rounding in mental multiplication (34 x 19 as (20 x34) -34)
- Use doubling and halving as a mental division and multiplication strategy. E.g to divide by $2,4,8,5,20$ and 25 ($628 \div 8$ is halved three times) $(28 \times 25$ is $1 / 4$ of 28×100 $=700$)
- All times tables facts

